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Abstract. We examine the canonical forms of Painlevé equations and argue that the equation for
PIII in which one parameter is taken to be equal to zero should be considered as a canonical form
different from the standard PIII . Our argument is based on the fact that the value of this parameter
cannot be modified through auto-Bäcklund transformations. We investigate the possible discrete
forms of this equation and produce two of them. One is of a difference type, where the independent
variable enters linearly, while the second one is ofq type where the independent variable enters in
a multiplicative way. The properties of these discrete equations are also studied.

1. Introduction

The discovery of the Painlevé transcendents [1] is one of the major successes in the theory of
integrable systems. These new functions are defined from the solution of integrable second-
order differential equations (ODEs). Their explicit integration was presented much later, by
Ablowitz and Segur [2]. The complete classification of second-order ODEs possessing the
Painlev́e property was initiated by Painlevé himself, and completed by Gambier [3]. Common
belief is that there are 50 such equations and that six of these define new transcendents.
Gambier presented a minimal list of 24 equations and clearly stated that when all possible
transformations are considered the resulting forms can be counted well into the hundreds.
The pseudocanonical list of 50 is essentially based on Ince’s book [4] which is the standard
reference on the subject. Recently, Cosgrove [5] has challenged this common belief (in a work
that remains, alas, unpublished) and presented his own canonical lists of 74, 81 and even 120
equations.

Given this situation one can ask whether there are just six Painlevé transcendents, defined
through the second-order ODEs examined by Painlevé and Gambier. Since the functional forms
of the equations are given it is clear that the only freedom that is left is related to the parameters
that appear in five of the Painlevé equations. Now, it is well known that the Painlevé equations
have auto-B̈acklund and Schlesinger transformations which relate the solutions of a Painlevé
equation for a given set of parameters to the solution for some other set of parameters [6].
Thus, in general, no special values of the parameters exist, since they can be modified through
the auto-B̈acklund transformations. However, there exist situations where some parameters
cannot be modified by auto-Bäcklund transformations. This is the case for two of the Painlevé

‖ Permanent address: Department of Mathematics, Kanchi Mamunivar Centre for Postgraduate Studies, Pondicherry,
India.

0305-4470/00/030579+12$30.00 © 2000 IOP Publishing Ltd 579



580 A Ramani et al

equations, namely PIII and PV. For the latter it is well known [3] that there exists a special
case where the equation can be transformed to PIII . Thus no new transcendent is introduced
in this case. However, in the former case the situation is not as simple. In this paper we shall
study the one-parameter PIII equation and show that it has properties different from those of
the full PIII . We shall also present two different discretizations. One is a discrete Painlevé
equation of difference type, while the other is a multiplicative,q-discrete, one. For both,
we present the nonlinear and bilinear forms. The equations obtained through the appropriate
Miura transforms are also given.

2. The continuous one-parameter PIII equation

Let us consider the PIII equation

w′′ = w′2

w
− w

′

t
+

1

t
(αw2 + β) + γw3 +

δ

w
(2.1)

where the prime (′) indicates derivation with respect to the independent variablet . It is clear,
given the form of (2.1), that only two parameters are significant: the remaining two can be
put to 1 through a scaling of the dependent and the independent variables. This is possible,
of course, only if their value is not zero. Thus the cases where these parameters vanish may
constitute new canonical forms associated to PIII . Let us examine (2.1) in more detail.

The general form of PIII corresponds to (2.1) withγ δ 6= 0. The standard normalization is
γ = 1, δ = −1.

w′′ = w′2

w
− w

′

t
+

1

t
(αw2 + β) +w3− 1

w
. (2.2)

The auto-B̈acklund transformation of (2.1) in this case is

wα±2,β+2 = ± 1

w

t(w
′
w
± w + 1

w
)− 1− β

t(w
′
w
± w + 1

w
) + 1± α

wα±2,β−2 = ∓ 1

w

t(w
′
w
± w − 1

w
)− 1 +β

t(w
′
w
± w − 1

w
) + 1± α (2.3)

wherewα+p,β+q denotes the solution of (2.2) whereα andβ are translated byp andq, and
where we have only dropped the indices for the basic solution, i.e.w ≡ wα,β . From (2.3) we
see that the valuesα = 0 and/orβ = 0 do not play any special role since they can be modified
through the application of the auto-Bäcklund transformation.

Let us assume now thatγ = 0, whileαδ 6= 0. This is the case we are going to focus on
here. Clearly, we can choose the scaling of the dependent and independent variable so as to
haveα = 1, δ = −1, and the remaining parameter is now calledη. Thus the one-parameter
PIII equation takes the form

w′′ = w′2

w
− w

′

t
+

1

t
(w2 + η)− 1

w
. (2.4)

This equation is different from the standard form (2.2) since the missing term cannot be restored.
It has only one free parameter and is different from the other one-parameter Painlevé equation,
PII . (We often refer to equation (2.4) as ‘lame-PIII ’, since it lacks one of the two degrees of
freedom of the full PIII .) Equation (2.4) has many, but not all, properties of the full PIII . In
particular, its auto-B̈acklund transformation

wη±2 = t 1± w
′

w2
− η ± 1

w
(2.5)
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allows one to modify the value ofη. (Thusη = 0 doesnot play a special role.) In (2.5) we
have used the same notational convention as for (2.3). Two of the properties of PIII are still
missing in (2.4). It does not lead to PII through coalescence but only to PI. Indeed, putting
w = ε−5 − ε−1u, t = −2ε−15(1 + ε8z), η = −3ε−10, we find, at the limitε → 0, Painlev́e
I, u′′ = 6u2 + z, where the prime (′) now denotes the derivative with respect toz. Moreover,
equation (2.4) does not possess special solutions obtained through a reduction to a Riccati
equation, which shows it is essentially different from PII . A property of the one-parameter
PIII that is not so well known is the one concerning its Miura transformation. The Miura
transformation can be expressed as a system

φ = t w
′ + 1

w
(2.6a)

wφ′ = w2 − φ + η + 1. (2.6b)

Eliminatingφ between (2.6a), (2.6b), and the derivative of the former gives the one-parameter
PIII equation (2.4) forw. On the other hand, eliminatingw between (2.6a), (2.6b) and the
derivative of the latter leads to a second-order, second-degree equation forφ:

(φ′′ + 2)2 = φ2

t2
(φ′2 + 4φ − 4η − 4). (2.7)

Equation (2.7) is precisely equation SD-III.A identified by Cosgrove and Scoufis [7] in the
study of second-degree Painlevé equations.

By putting more parameters to zero one can obtain further canonical forms of PIII . The
caseγ = δ = 0,αβ 6= 0, is a zero-parameter PIII (sinceα andβ can be scaled, for instance, to
1 and−1, respectively). This equation can be transformed throughw→ w2, t → t2 to a PIII

with α = β = 0 andγ δ 6= 0, whereupon the values ofα, β can be modified through the use of
auto-B̈acklund transformations. Finally, the caseγ = α = 0 (or, equivalently,β = δ = 0) is
a case where PIII can be reduced to an autonomous equation which can be integrated in terms
of elliptic functions.

2.1. Discrete equations from the auto-Bäcklund transformations

Before proceeding further let us recall the discrete equations obtained from the auto-Bäcklund
transformations of the two- and one-parameter PIII . The general theory of this construction
was presented in [8]. The main idea is that one uses the auto-Bäcklund transformation in
order to construct solutions corresponding to adjacent values of some parameter and then
eliminates the first derivative between these relations. The resulting equation is a mapping
where the independent variable is the parameter of the continuous equation. The discrete
equation associated to the two-parameter PIII obtained from (2.3) in a straightforward way is

α + β + 2

1− wwα+2,β+2
+

α + β − 2

1− wwα−2,β−2
= 2t

(
w +

1

w

)
+ 2α (2.8)

where we recall thatw stands forwα,β , a discrete Painlev́e equation known as the alternate
d-PII and which was studied in great detail in [9]. In that paper, we presented the Miura
transformation of alternate d-PII in the form of a four-point mapping. It turns out that it is
possible to obtain a simpler Miura transformation which leads to a three-point mapping. The
derivation is based on the bilinear formalism and the self-dual description of alternate d-PII

we presented in [9], and here we will give just the results without details. We introduce new
variablesu andx which arenot themselves solutions of (2.2) but are related to the latter and
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live on the same lattice but at different points. We have the system

xα−2,β − t = (α + β − 2)w

wwα−2,β−2 − 1

uα−1,β+1 +
µ

2
= xα−2,β + t

w

uα−1,β+1− µ
2
= −(xα,β+2 + t)w

(2.9)

whereµ = β − α + 2 is a constant along the evolution. By eliminatingu andx one recovers
the alternate d-PII equation (2.8). On the other hand, eliminatingw leads to a system foru and
x which is the Miura transformation of the alternate d-PII :

(xα,β+2 + t)(xα−2,β + t) = µ2

4
− u2

α−1,β+1 (2.10a)

uα−3,β−1 + uα−1,β+1 = (α + β − 2)
t + xα−2,β

t − xα−2,β
. (2.10b)

It turns out that if one tries to eliminateu between (2.10a), its downshift (by two units in both
α andβ) and (2.10b), one does obtain a three-point mapping forx but which is quadratic
in xα,β+2 andxα−4,β−2. This equation was also presented in [9] where we remarked that its
discrete derivative is just the four-point mapping mentioned above. On the other hand, it is
possible to eliminatex between (2.10a), (2.10b) and its upshift (by two units in bothα and
β) and get a three-point mapping foru which is now homographic foruα−3,β−1 anduα+1,β+3,
namely

(uα−3,β−1 + uα−1,β+1 + α + β − 2)(uα−1,β+1 + uα+1,β+3 + α + β + 2)

(uα−3,β−1 + uα−1,β+1)(uα−1,β+1 + uα+1,β+3)
= 16t2

µ2 − 4u2
α−1,β+1

.

(2.11)

This equation is a limit of the d-PV equation which has been recently proposed [10].
Equation (2.11) constitutes a discrete form for the equation P34 [4], and was first proposed
in [11].

The discrete equation obtained from the auto-Bäcklund transformation (2.5) is

wη+2 +wη−2 = 2t − 2ηw

w2
(2.12)

which is a discrete form of PI [8]. As we see in what follows, this equation can also go to the
zero-parameter PIII (γ = δ = 0). Its Miura transformations have been studied in [12]. Indeed,
defining again a new variableu, which is not a solution of (2.4), throughuη+1 = wwη+2−(η+1),
we obtain the equation

(uη−1 + uη+1)(uη+1 + uη+3) = 4t2

uη+1 + η + 1
(2.13)

which was identified in [13] as another discrete form of PI.

3. The discrete, one-parameter difference-PIII equation

The gist of the above analysis is that the continuous PIII has two distinct canonical forms which
can be distinguished by the number of effective parameters entering the equation. We now
turn to the investigation of the discrete analogues [14] of these equations and, in particular,
that of the one-parameter, since the discrete forms of the full PIII are well known. As we have
shown in previous work [14, 15], the discrete Painlevé equations appear under two distinct
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forms depending on whether the independent variable enters in an additive or multiplicative
way. In the first case we have difference (sometimes referred to asδ) equations, while in the
second case we haveq equations. The equations we are going to derive must go over to the
one-parameter PIII at the continuous limit. Let us start with the discrete, difference equation.
As we have shown in [16], the full discrete PIII can be represented by the system

x + x̄ = z̃y + a

y2 − c2
(3.1a)

y + y
¯
= zx + b

x2 − d2
(3.1b)

wherez = z0 + κn, z̃ = z + κ/2 andx̄, y
¯

stand forx(n + 1) andy(n − 1), respectively. The
standard normalization of (3.1) isc = d = 1. Equation d-PIII has been studied in great detail
in [17] where we have given its self-dual description through the analysis of the geometry
of the evolution and its Schlesinger transformations. Equation (3.1) can be obtained from
the auto-B̈acklund transformations of PV. The discrete equivalent of the one-parameter PIII ,
equation (2.4), can be obtained from (3.1) by takingc = 0. We thus find

x + x̄ = z̃y + a

y2
(3.2a)

y + y
¯
= zx + b

x2 − d2
. (3.2b)

By takingy = s
2x + sx ′−x

4x2 ε +O(ε2), a = ε2/32,b = −ηε2/16,d = ε/4, where we have taken
κ = ε, we find at the continuous limitε → 0, so thatz→ s, the equation

x ′′ = x ′2

x
− x

′

s
+

1

4s2
(x2 + ηs)− 1

4x
(3.3)

where (′) denotes the derivative with respect tos. Equation (3.3) is the one-parameter PIII

although in noncanonical form. Puttingx = tw ands = t2 we recover exactly equation (2.4).
Equation (3.2) has, just like its continuous counterpart, some but not all of the properties of
the full d-PIII . In particular, it does not have special-function-type solutions and does not
degenerate towards d-PII through coalescence, but only to d-PI. As a matter of fact, taking
d = 0 allows one to introduce a scaling such thata = b, in which case (3.2b) is just the
downshift of (3.2a) (by half a step inz). The resulting equation is a d-PI: with the proper
identification of the parameters it is simply equation (2.12). On the other hand, if we consider
the continuous limit that leads to (3.3) it is easy to retrace the steps withd = 0. The result
is then the same as equation (3.3) with the 1/x term missing. Thus, thed = 0 case, which
coincides with equation (2.12), has a continuous limit to the zero-parameter PIII (γ = δ = 0).
We must make clear, however, that these two continuous limits of (2.12) exist in different
sectors. If we consider equation (2.12) as resulting from the one-parameter d-PIII , then we can
follow the different behaviours ofy in the two continuous limits. In the PI sector,y is the same
asx, just upshifted by half a step, while in the PIII sectory is roughly equal toz/2x.

3.1. Relation to PIII and bilinearization

It is interesting to show that one can obtain equation (3.2) from the auto-Bäcklund
transformations of a continuous equation. It turns out that the same Schlesinger transformations
of the continuous PIII which, as we have seen, led to the alternate d-PII , equation (2.8), also give
the discrete one-parameter PIII , equation (3.2). We introducey = wα−2,β+2, y¯

= wα−2,β−2

and, using equation (2.3), we find

y + y
¯
= 2β(t (w′ − w2)− (α − 1)w) + 2(α − 2)t

(t (w′ − w2)− (α − 1)w)2 − t2 . (3.4a)
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This is indeed identical to equation (3.2b) provided we definex = (t (w′ −w2)− (α − 1)w),
which, incidentally, is exactly the quantityx introduced in equation (2.9), and we identify
z = 2β, d = t , b = 2(α−2)t . Next, using equation (2.3) and the differential equation for PIII ,
equation (2.2), we can prove thatx defined above satisfies two relations in terms ofy andy

¯
,

namelyx = t (y ′ − 1)/y2 + (β + 1)/y andx = t (−y
¯
′ − 1)/y

¯
2 + (β − 1)/y

¯
. Thus ‘upshifting’

the second relation (i.e. writing it forβ + 4) and adding to the first one we find

x + x̄ = −2t

y2
+

2β + 4

y
(3.4b)

which is just (3.2a) with a = −2t , and 2β + 4 is preciselỹz, since a full stepκ of z = 2β is
κ = 8.

Since the one-parameter discrete PIII and the alternate discrete PII are both obtained from
the Schlesinger transformations of the continuous PIII it makes sense to compare them, in
particular, as motions in the(α, β) plane. The variabley is essentially the same asw, just
shifted to the point(α − 2, β + 2), but note that in (2.8) the motion is by two units in both
α andβ (the dual equation whereα andβ vary in opposite directions also exists), while
in (3.2) the motion is by four units inβ only (the dual motion inα only also exists). Thus
the two motions are at an angle of 45◦ to each other. The geometry of alternate d-PII and its
Schlesinger transformations have been described in detail in [9]. Using these results of [9] it is
straightforward to obtain the bilinearization of the one-parameter d-PIII . We start by introducing
the two-parameterτ -function which exists on points of the two-dimensional latticeτα+2m,β+2p,
such thatm + p is odd. We now definew as

wα,β = τα,β+2τα,β−2

τα+2,βτα−2,β
. (3.5)

The quantityw (or equivalently,y = wα−2,β+2) exists at points(α + 2m,β + 2p) such that
m + p is even. The quantityx, on the other hand, lives at the same points on the lattice as the
τ and is defined by

xα−2,β = t − τα,β+2τα−4,β−2

τ 2
α−2,β

= τα,β−2τα−4,β+2

τ 2
α−2,β

− t. (3.6)

A first bilinear equation is obtained by equating the two expressions forx:

τα,β+2τα−4,β−2 + τα,β−2τα−4,β+2 = 2tτ 2
α−2,β . (3.7)

Substituting the expressions ofx andy in terms ofτ into equation (3.2) we obtain multilinear
equations which can be separated into the bilinear system

τα−4,β−2τα+2,β − τα,β+2τα−2,β−4 = (β + α − 2)τα,β−2τα−2,β (3.8a)

τα+2,βτα−4,β+2 + τα,β−2τα−2,β+4 = (β − α + 2)τα,β+2τα−2,β . (3.8b)

Equations (3.7) and (3.8) are an overdetermined but compatible system, and constitute the
bilinearization of the one-parameter d-PIII , equation (3.2), as well as the alternate d-PII ,
equation (2.8), as can be easily checked.

3.2. The Miura transformed equations

Just as we have done in the continuous case, we shall introduce the Miura transformation
of the one-parameter d-PIII . The equation we are seeking is one relating the quantityu

introduced in (2.9) and a new variable which we shall denote byv. Our guide, as usual,
will be the bilinear formalism. Using (2.9) and the expressions forx, w in terms ofτ we find
uα−1,β+1 + µ/2 = τα−4,β+2τα+2,β/τα,β+2τα−2,β . Next, we introducev which, in terms of the
τ -functions can be writtenvα−1,β−1 = τα−4,β−2τα+2,β/τα,β−2τα−2,β . It is now staightforward
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to show thatvα−1,β−1+uα−1,β+1+µ/2= 2t/wα,β andvα−1,β+3+uα−1,β+1+µ/2= 2t/wα−2,β+2,
using the same convention as for the one-parameter d-PIII , equation (3.2). Multiplying the two
relations we find a denominatorwwα−2,β+2 which, using (3.8a), can be expressed in terms
of uα−1,β+1 only. The result is a first equation relatingvα−1,β−1, vα−1,β+3 anduα−1,β+1 which
reads

(vα−1,β−1 + uα−1,β+1 +µ/2)(vα−1,β+3 + uα−1,β+1 +µ/2) = 4t2
µ/2 +uα−1,β+1

µ/2− uα−1,β+1
. (3.9)

It is clear from the form of (3.9) that we can obtain a much simpler expression if we shiftu.
Thus redefiningu→ u− µ/2 and dropping the first index which is alwaysα − 1, we have

(vβ−1 + uβ+1)(vβ+3 + uβ+1) = 4t2
uβ+1

β + 1− uβ+1− (α − 1)
(3.10a)

whereβ + 1 is the value atuα−1,β+1 of the independent variable whileα − 1 is the constant
parameter along this evolution, and we have used the value ofµ = β − α + 2. The
second equation relatingu and v can be obtained along similar lines, using the fact that
vα−1,β−1 + uα−1,β−3 = 2t/wα−2,β−2. The final result is

(vβ−1 + uβ−3)(vβ−1 + uβ+1) = −4t2
vβ−1

β − 1− vβ−1 + α − 1
. (3.10b)

Here the value of the independent variable atvα−1,β−1 is indeedβ − 1, shifted down by
a half-step from (3.10a). System (3.10) is the Miura transformation of the one-parameter
d-PIII equation. Its continuous limit can be obtained by putting 4t2 = ε, β = 4s/ε and
vα−1,β−1 = −uα−1,β+1 + εx/2s +O(ε2). At the limit ε → 0 we obtain the system

u + α − 2= −s 2x ′ + 1

x
(3.11a)

2xu′ = x2

s
− u (3.11b)

where the (′) denotes the derivative with respect tos. This is the analogue of system (2.6).
Note that up to a trivial normalization,x here is essentially the quantityxα,β+2 appearing in
equation (2.9). Eliminatingu we obtain, forx, a one-parameter d-PIII in the noncanonical
form (3.3), withα instead ofη, while eliminatingx leads to a second-degree equation for
φ = u + α − 2 similar to (2.7).

One remark is in order at this point. In [9] we have presented the solutions of alternate
d-PII in terms of special functions (Bessel or, equivalently, discrete-Airy functions). These
solutions are written in terms ofτ -functions which are Casorati determinants, the size of
which is determined byα − β. This size is, therefore, constant along the evolution defined
by equation (2.8): they are what are called ‘lattice’ solutions. At the continuous limit these
solutions go over to solutions of continuous PII in terms of fixed-size Wronskian determinants
of Airy functions. Alternate d-PII also has solutions where the size of the determinants is
determined byα+β and keeps varying along the evolution: such solutions are called ‘molecule’
solutions in the same terminology. These solutions do not possess a continuous limit. The
very sameτ -functions also define solutions for equation (3.2) but here the evolution is alongβ

for fixedα and, therefore, the size of the determinants always varies along the evolution. Thus
the one-parameter d-PIII has two families of ‘molecule’ solutions but no lattice-type solutions.
In particular, as we stated above, it does not have special-function-type solutions obtained
through a reduction to a Riccati equation (which would be elementary lattice-type solutions,
in terms of determinants the size of which is just one).
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4. The one-parameterq-PIII equation

We turn now to theq-discrete form of the one-parameter PIII . The starting point is the full
q-PIII , first obtained in [18]:

xx̄ = aqy + λq2

y(y + d)
(4.1a)

yy
¯
= bqx + q2

x(x + c)
(4.1b)

whereq = q0λ
n. (We must point out here that the equation known as standardq-PIII is, as

shown by Jimbo and Sakai [19], aq-discrete form of PVI when its full freedom is considered,
and is thus not quite appropriate for our purposes.) The standard normalization of (4.1) is
c = d = −1 and, in fact, the continuous limit of (4.1) is the full PIII . The one parameterq-PIII

can be obtained from (4.1) in a straightforward way by takingc = 0. We gaugex through
x → qx/b, takeb2 = d without loss of generality since it corresponds to a scaling ofy, and
redefine the independent variable throughz = λdq/a. We thus find the canonical form of this
q equation:

xx̄ = 1 +y/z

y(1 +y/d)
(4.2a)

yy
¯
= d x + 1

x2
. (4.2b)

The continuous limit of equation (4.2) is obtained by putting:y = ε−1w/t , x = −εt/w +
O(ε2), λ = e−2ε , z = −2ε−3/t2 andd = 1 + ηε, resulting in the one-parameter continuous
PIII , equation (2.4).

4.1. Bilinearization and Miura transformations

At this point it is interesting to study, in more detail, equation (4.2). We start by deriving the
Schlesinger transformations, which correspond to the changes of the parameterd. We shall
denote these changes by the symbol hat, i.e.d̂ = λd. We first introduce an auxiliary variable
v through the relations

x̄yv = xyv̂ = 1. (4.3)

Using (4.3) and the one-parameterq-PIII we can now establish the equations for the evolution
along thed direction:

vv̂ = 1 +y/d

y(1 +y/z)
(4.4a)

yy
ˆ
= zv + 1

v2
. (4.4b)

We remark that this equation has the same form as (4.2), provided one replacesx by v and
interchangesz andd. Thus the one-parameterq-PIII is self-dual. Before proceeding further,
let us give the bilinearization of equation (4.2). We start with the ansatze:xz,d = ττz/λ,d

τz,λd τz/λ,d/λ
,

vz,d = ττz,d/λ
τλz,d τz/λ,d/λ

andyz,d = τλz,λd τz/λ,d/λ
τ 2 = z( τλz,d τz/λ,d

τ 2 − 1) = d( τz,λd τz,d/λ
τ 2 − 1), whereτ stands

for τz,d . Note that though for simplicity we gave tox, v andy the indices(z, d), this is really
only strictly true fory, the actual values of the independent variable and of the parameter being
in fact (z/

√
λ, d) for x and (z, d/

√
λ) for v. Using these ansätze one can obtain two bilinear

equations:

τλz,λdτz/λ,d/λ = z(τλz,dτz/λ,d − τ 2) = d(τz,λdτz,d/λ − τ 2) (4.5)
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and verify that (4.2a) is identically satisfied. A third bilinear equation is obtained from
equation (4.2b) and we give it in two forms equivalent up to (4.5):

τλz,λ2dτz/λ,d/λ = z(ττz,λd + τz/λ,dτλz,λd) (4.6a)

τλ2z,λdτz/λ,d/λ = d(ττλz,d + τz,d/λτλz,λd). (4.6b)

Just as we have done for the continuous and discrete one-parameter d-PIII , here we shall
introduce the Miura transformation of equations (4.2) and (4.4). We start by introducing the
auxiliary variableu defined in terms of theτ -functions asuz,d = τz/λ,d τz,d/λ

ττz/λ,d/λ
, the actual values

of the independent variable and of the parameter being, in fact, (z/
√
λ, d/
√
λ). The Miura

transformations involvingu read

uz,d = xz,d(1 +yz,d/d) = vz,d(1 +yz,d/z) (4.7a)

uλz,λd = xλz,d(1 +yz,d/d) = vz,λd(1 +yz,d/z). (4.7b)

Using equations (4.7) together with (4.3) we can easily recover (4.2) and (4.4). On the other
hand we can also obtain their Miura transformations by eliminatingy and one of the variables
x or v. For instance, the elimination ofy andx, leads to the Miura transformations of (4.2):(

uz,d

vz,d
− 1

)(
uλz,d

vz,d
− 1

)
= 1

z

vz,d + 1

v2
z,d

(4.8a)(
uz,d

vz,d
− 1

)(
uz,d

vz/λ,d
− 1

)
= d

z
(1 +uz,d). (4.8b)

This equation can assume a ‘nicer’ form if we invertv. Thus withv→ 1/v we obtain

(uz,dvz,d − 1)(uλz,dvz,d − 1) = 1

z
vz,d(vz,d + 1) (4.9a)

(uz,dvz,d − 1)(uz,dvz/λ,d − 1) = d

z
(1 +uz,d). (4.9b)

Similarly, the Miura transformation of (4.4) is obtained by elimination ofy andv resulting in
(with x → 1/x):

(uz,dxz,d − 1)(uz,λdxz,d − 1) = 1

d
xz,d(xz,d + 1) (4.10a)

(uz,dxz,d − 1)(uz,dxz,d/λ − 1) = z

d
(1 +uz,d) (4.10b)

where, like in (4.4)d is the independent variable andz is a parameter. The continuous limit
of (4.9) and (4.10) is a second-degree equation of Cosgrove type. Puttinguz,d = −1− εφ/2,
vz,d = −1 + εφ/2 +O(ε2) in (4.9) and choosing the same ansatze forλ, z andd as for the
continuous limit of (4.2) we obtain exactly equation (2.7) forφ.

4.2. The oblique equations

We now turn to the derivation of the equation that relatesx andv. In geometrical terms the
motions alongz andd define evolutions along two orthogonal axes while the evolution we are
looking for now is a diagonal one, at 45◦, where bothz andd advance byλ. Thusz = z0λ

n

andd = d0λ
n, wheren is the number of steps inboth the z andd directions. Using again,

(4.2) and (4.3), we readily find

vz/λ,dvz,λd = 1

d(xz,d + 1)
(4.11a)

xz,dxλz,λd = 1

z(vz,λd + 1)
. (4.11b)
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This equation was first derived in this form in [18] where it was shown to be equivalent to
some other equation, namely

(zxz,dxλz,λd − 1)(zxz,dxz/λ,d/λ/λ− 1) = 1

d(xz,d + 1)
(4.12)

obtained in [13] as a limit ofq-PV. At the continuous limit it goes over, as expected, to PII .
Indeed, takingxz,d = −2(1 +εw), vz,d = −2(1− εw)+O(ε2), z0 = − 1

4, d0 = −(1 +ε3µ)/4
andλ = 1 + ε3/2 (which means thatλn = 1 + ε2t/2 with t = nε), we obtain, at the limit
ε → 0, the equationw′′ = 2w3 + tw − 2µ − 1

2: i.e. exactly Painlev́e II in canonical form.
Equation (4.11) describes an equation along a diagonal direction involvingx. It is also possible
to define a diagonal evolution which involvesy andu. Using the Miura transformations (4.7)
introduced above we can easily find

uz,duλz,λd = (1 +yz,d/d)(1 +yz,d/z)

yz,d
(4.13a)

yz,dyz/λ,d/λ = (1 +uz,d)zd/λ. (4.13b)

From the form of (4.13b) it is clear that we can eliminateu altogether and obtain an equation
for y only. We thus find

(yz,dyλz,λd − λzd)(yz,dyz/λ,d/λ − zd/λ) = zd (yz,d + d)(yz,d + z)

yz,d
. (4.14)

This equation, up to a trivial gauge, is part of theq-PV family discussed in [13], although not
explicitly analysed there. We can show that (4.14) is a discrete form of P34. Indeed putting
yz,d = (1 + ε2(w + t/2))/4 and taking the same ansatze forλ, z andd as for the continuous
limit of (4.11) we obtain, at the limitε → 0, the equationw′′ = w′2/2w−4w2− tw−µ2/2w,
i.e. P34 in almost canonical form.

Equation (4.11) being a discrete PII possesses solutions in terms ofq-discrete special
functions. We find readily that ifd0 = z0, x andv can be expressed asxz,d = −2Az,d/Az/λ,d/λ,
vz,λd = −Az,d/2zAλz,λd , whereA is the solution of theq-discrete Airy equationAz/λ,d/λ −
2Az,d − 4zAλz,λd = 0. At the continuous limitA satisfies the Airy equationA′′ + tA/2 = 0,
and the correspondingu = A′/A indeed satisfies PII with µ = 0. Higher solutions of this type
exist wheneverd0/z0 = λm, wherem is an integer, and can be obtained using the Schlesinger
transformations given by equations (4.2) and (4.4). This means that the same objects can be
considered as solutions of (4.2) and (4.4). However, since the solutions are expressed as ratios
of determinants inA the size of which grows with the evolution steps along the orthogonal
axes (‘bar’ or ‘hat’, independently) these solutions of the one-parameterq-PIII are again of
molecule type.

Equation (4.11) is not the only transverse equation we can obtain from (4.2), (4.3). Indeed,
we can consider a motion wherez andd advance in opposite directions, i.e. whend becomes
λd, z becomesz/λ. The equation forx andv is slightly more complicated in this case. We
find

(xλz,d − vλz,d)(xλz,d − vz,λd)
(xλz,d − dvλz,d/λz)(xλz,d − dvz,λd/z) =

xλz,d + 1

dx2
λz,d

(4.15a)

(vz,λd − xz,λd)(vz,λd − xλz,d)
(vz,λd − zxz,λd/λd)(vz,λd − zxλz,d/d) =

vz,λd + 1

zv2
z,λd

. (4.15b)

This equation can assume a more familiar form if we introduce the variable changev→ 1/v.
We thus obtain

(xλz,dvλz,d − d/λz)(xλz,dvz,λd − d/z)
(xλz,dvλz,d − 1)(xλz,dvz,λd − 1)

= dx2
λz,d

xλz,d + 1
(4.16a)
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(vz,λdxz,λd − λd/z)(vz,λdxλz,d − d/z)
(vz,λdxz,λd − 1)(vz,λdxλz,d − 1)

= λd2

zvz,λd(vz,λd + 1)
(4.16b)

where the independent variable is nowd/z and the only parameter iszd. Equation (4.16) is
a limit of the asymmetricq-PVI which has been recently derived [10]. It is, of course, a very
particular limit since out of the six parameters of asymmetricq-PVI only one survives here.
We can remark here that equations (4.11) and (4.15) look completely different. Contrary to
the case of equations (4.2)–(4.4) the motion along the diagonal direction is not self-dual. Thus
although the space evolution of the one-parameterq-PIII and its Schlesinger transformations
is a two-dimensional one it does not have the symmetries of either aB2 or anA2 Weyl group,
which would have been the case in a perfectly self-dual situation.

5. Conclusion

We can now sum up our findings. In this paper we have studied an often overlooked canonical
form of the Painlev́e III equation. We have shown that this one-parameter PIII has properties
different than those of the full PIII (and also than those of the other one-parameter Painlevé
equation, PII ). We have presented two different discretizations of this one-parameter PIII . The
first is a discrete Painlevé equation of difference type while the second is aq-Painlev́e equation.
We have shown that the difference equation, as expected, is perfectly self-dual. Moreover, the
q equation is also self-dual when one considers the motion along the two main directions:
evolution inz or changes of the parameterd through Schlesinger transformations. However,
the motion in diagonal directions when the original independent variablez and the parameter
d both change, either together or in opposition, isnot self-dual. This makes the geometrical
description of this equation all the more challenging.

The method used in this paper was to study an equation, its difference form and itsq form
in parallel. We consider that this is the right approach to the study of discrete systems since
it establishes a parallel with continuous systems and explores the two aspects of discreteness:
the additive and the multiplicative. We intend to use this mode of complete investigation in
future work on discrete systems.
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