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Abstract. We examine the canonical forms of Pairéezquations and argue that the equation for

Py in which one parameter is taken to be equal to zero should be considered as a canonical form
different from the standard,P. Our argument is based on the fact that the value of this parameter
cannot be modified through autaaBklund transformations. We investigate the possible discrete
forms of this equation and produce two of them. One is of a difference type, where the independent
variable enters linearly, while the second one ig ¢ype where the independent variable enters in

a multiplicative way. The properties of these discrete equations are also studied.

1. Introduction

The discovery of the Painlétranscendents [1] is one of the major successes in the theory of
integrable systems. These new functions are defined from the solution of integrable second-
order differential equations (ODESs). Their explicit integration was presented much later, by
Ablowitz and Segur [2]. The complete classification of second-order ODEs possessing the
Painlewe property was initiated by Painlewimself, and completed by Gambier [3]. Common
belief is that there are 50 such equations and that six of these define new transcendents.
Gambier presented a minimal list of 24 equations and clearly stated that when all possible
transformations are considered the resulting forms can be counted well into the hundreds.
The pseudocanonical list of 50 is essentially based on Ince’s book [4] which is the standard
reference on the subject. Recently, Cosgrove [5] has challenged this common belief (in a work
that remains, alas, unpublished) and presented his own canonical lists of 74, 81 and even 120
equations.

Given this situation one can ask whether there are just six Péitlenscendents, defined
through the second-order ODEs examined by Pa@dex Gambier. Since the functional forms
of the equations are givenitis clear that the only freedom that is left is related to the parameters
that appear in five of the Painleequations. Now, it is well known that the Pairéequations
have auto-Bcklund and Schlesinger transformations which relate the solutions of a Rainlev
equation for a given set of parameters to the solution for some other set of parameters [6].
Thus, in general, no special values of the parameters exist, since they can be modified through
the auto-Bicklund transformations. However, there exist situations where some parameters
cannot be modified by autoaBklund transformations. This is the case for two of the Painlev
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equations, namely,P and R,. For the latter it is well known [3] that there exists a special
case where the equation can be transformed,to Phus no new transcendent is introduced

in this case. However, in the former case the situation is not as simple. In this paper we shall
study the one-parametefRequation and show that it has properties different from those of
the full B;. We shall also present two different discretizations. One is a discrete Fainlev
equation of difference type, while the other is a multiplicatigediscrete, one. For both,

we present the nonlinear and bilinear forms. The equations obtained through the appropriate
Miura transforms are also given.

2. The continuous one-parameter |} equation

Let us consider the|P equation
12 / 1 5
w”:w——i+—(aw2+ﬂ)+yw3+— (2.1)
w t ot w

where the prime’) indicates derivation with respect to the independent variablies clear,
given the form of (2.1), that only two parameters are significant: the remaining two can be
put to 1 through a scaling of the dependent and the independent variables. This is possible,
of course, only if their value is not zero. Thus the cases where these parameters vanish may
constitute new canonical forms associated o Bet us examine (2.1) in more detalil.

The general form of |p corresponds to (2.1) withs # 0. The standard normalization is
y=16=-1.

w/2 /

1 1
w' = — 2 4 Zauw?+ gy +uwd - = 2.2)
w t t w

The auto-Bicklund transformation of (2.1) in this case is

112 +w+d)—1-8

wiZtw+i)+1lta

11X +w—1)—1+8

We2 g2 = F——= v 2.3
B W tw_1)+1ta @3)

w w

Wo+2,+2 =

wherewg+p g+, denotes the solution of (2.2) whesieand g are translated by andg, and
where we have only dropped the indices for the basic solutionpi=e.w, g. From (2.3) we
see that the values = 0 and/or8 = 0 do not play any special role since they can be modified
through the application of the autcaBklund transformation.

Let us assume now that = 0, whilead # 0. This is the case we are going to focus on
here. Clearly, we can choose the scaling of the dependent and independent variable so as to
havea = 1,8 = —1, and the remaining parameter is now calledrhus the one-parameter
P equation takes the form

12 /
w’ = w _£+}(w2+n)_1_ (2.4)
w t ot w
This equationis different from the standard form (2.2) since the missing term cannot be restored.
It has only one free parameter and is different from the other one-parameter B@igieation,
Pi. (We often refer to equation (2.4) as ‘lamg-Psince it lacks one of the two degrees of
freedom of the full ip.) Equation (2.4) has many, but not all, properties of the fyll n
particular, its auto-Bcklund transformation

1+w pnt1
w? w

Wyt =1 (25)
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allows one to modify the value of. (Thusn = 0 doesnot play a special role.) In (2.5) we

have used the same notational convention as for (2.3). Two of the propertigs areFstill
missing in (2.4). It does not lead tq Phrough coalescence but only tp. Rndeed, putting
w=¢€e2—ely r=-211 +€8), n = —3¢719, we find, at the limitt — 0, Painlee

I, u” = 6u®+ z, where the prime’Y now denotes the derivative with respecttoMoreover,
equation (2.4) does not possess special solutions obtained through a reduction to a Riccati
equation, which shows it is essentially different from. PA property of the one-parameter

Py that is not so well known is the one concerning its Miura transformation. The Miura
transformation can be expressed as a system

w +1

o=t (2.69)

we =w?>—¢+n+1l (2.6b)

Eliminating¢ between (2.8), (2.6b), and the derivative of the former gives the one-parameter
Py equation (2.4) forw. On the other hand, eliminating between (2.6), (2.6b) and the
derivative of the latter leads to a second-order, second-degree equation for
" 2 _ ¢2 12
(" +2) =2(@ +4p —4n —4). (2.7)

Equation (2.7) is precisely equation SD-III.A identified by Cosgrove and Scoufis [7] in the
study of second-degree Painfegquations.

By putting more parameters to zero one can obtain further canonical formg.oT Re
casey =8 = 0,a8 # 0, is a zero-parameteyP(sincex andg can be scaled, for instance, to
1 and—1, respectively). This equation can be transformed thraugh w?,t — t>toa Ry
witha = 8 = 0 andy$ # 0, whereupon the values of 8 can be modified through the use of
auto-Backlund transformations. Finally, the cgse= « = 0 (or, equivalentlyg = § = 0) is
a case where P can be reduced to an autonomous equation which can be integrated in terms
of elliptic functions.

2.1. Discrete equations from the aut@&dklund transformations

Before proceeding further let us recall the discrete equations obtained from theaakionii
transformations of the two- and one-parametgr Frhe general theory of this construction

was presented in [8]. The main idea is that one uses the agtkhBd transformation in

order to construct solutions corresponding to adjacent values of some parameter and then
eliminates the first derivative between these relations. The resulting equation is a mapping
where the independent variable is the parameter of the continuous equation. The discrete
equation associated to the two-parametgrdbtained from (2.3) in a straightforward way is

+8+2 +8-2
a+p L@ B Py (
1—wwezpr2 1— wwg_2p-2

w+ 1) + 20 (2.8)
w

where we recall thaiw stands forw, g, a discrete Painl@ equation known as the alternate
d-R; and which was studied in great detail in [9]. In that paper, we presented the Miura
transformation of alternate d;Rn the form of a four-point mapping. It turns out that it is
possible to obtain a simpler Miura transformation which leads to a three-point mapping. The
derivation is based on the bilinear formalism and the self-dual description of alterngte d-P
we presented in [9], and here we will give just the results without details. We introduce new
variablesu andx which arenot themselves solutions of (2.2) but are related to the latter and
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live on the same lattice but at different points. We have the system
(x+B8—2w
WWe—2p-2—1
Mmoo Xq_2ptt
Ug—1,p+1 + E = % (29)
Ug_1p+1 — = = — (X pr2 +DW

2
whereu = 8 — o + 2 is a constant along the evolution. By eliminatingndx one recovers
the alternate d-Pequation (2.8). On the other hand, eliminatindeads to a system forand
x which is the Miura transformation of the alternate ¢t-P

2
"
Ctapra + 1) (am2p +1) = - = U1 puy (2.108)

Xog—2,p — 1 =

Ug—3 -1+ Ua—1p41 = (@ + P — Z)M-
I —Xq-2,8

It turns out that if one tries to eliminatebetween (2.18), its downshift (by two units in both
a and 8) and (2.1®), one does obtain a three-point mapping fobut which is quadratic
in xq p+2 @ndx,_4 g—o. This equation was also presented in [9] where we remarked that its
discrete derivative is just the four-point mapping mentioned above. On the other hand, it is
possible to eliminate between (2.18), (2.1M) and its upshift (by two units in both and
B) and get a three-point mapping f@which is now homographic far,_3 g—1 anduy+1 g+3,
namely

(2.10)

(Ug—3p-1tUa—1pr1t O+ B —2)(Ug_1pr1 Y Ugr1pr3ta +f+2) 16:2
(Ua—3p-1F Ua—1p+1) (Ua—1 p+1 F Ug+1 p+3) u?— 4u§_1,,3+1
2.11)

This equation is a limit of the d+Pequation which has been recently proposed [10].
Equation (2.11) constitutes a discrete form for the equatir{4, and was first proposed
in [11].

The discrete equation obtained from the autzBund transformation (2.5) is
2t — 2nw
2

Wye2 T Wy—2 = (2.12)

w
which is a discrete form of H8]. As we see in what follows, this equation can also go to the
zero-parameten P (y = § = 0). Its Miura transformations have been studied in [12]. Indeed,
defining again a new variabde which is not a solution of (2.4), through}+1 = ww,+2—(+1),
we obtain the equation

42

(y—1+ ups1) (Uper +upe3) = m (2.13)

which was identified in [13] as another discrete form of P

3. The discrete, one-parameter difference-ff equation

The gist of the above analysis is that the continugu$Bs two distinct canonical forms which

can be distinguished by the number of effective parameters entering the equation. We now
turn to the investigation of the discrete analogues [14] of these equations and, in particular,
that of the one-parameter, since the discrete forms of the fuluf® well known. As we have
shown in previous work [14, 15], the discrete Pai@equations appear under two distinct
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forms depending on whether the independent variable enters in an additive or multiplicative
way. In the first case we have difference (sometimes referred &pepuations, while in the
second case we hayeequations. The equations we are going to derive must go over to the
one-parameter f? at the continuous limit. Let us start with the discrete, difference equation.
As we have shown in [16], the full discretg,Rean be represented by the system

Zyta

zx+b
VY=g 5.

wherez = zo + kn, 7 = z + k/2 andx, y stand forx(n + 1) andy(rn — 1), respectively. The
standard normalization of (3.1)is= d = 1. Equation d-R has been studied in great detail

in [17] where we have given its self-dual description through the analysis of the geometry
of the evolution and its Schlesinger transformations. Equation (3.1) can be obtained from
the auto-Bicklund transformations ofyP The discrete equivalent of the one-parametgr P

equation (2.4), can be obtained from (3.1) by taking 0. We thus find
_ Zy+ta
x+x = 37 (3.29)
x+b
v+ Y= x2 — g2’

(3.2b)

By takingy = £ +5Xe + O(e2), a = €2/32,b = —ne?/16,d = €/4, where we have taken
k = €, we find at the continuous limé& — 0, so that; — s, the equation

1
+ - — 3.3
X s 4s? ns) 4x (3:3)

where () denotes the derivative with respectsto Equation (3.3) is the one-parametgf P
although in noncanonical form. Putting= rw ands = ¢* we recover exactly equation (2.4).
Equation (3.2) has, just like its continuous counterpart, some but not all of the properties of
the full d-R;;. In particular, it does not have special-function-type solutions and does not
degenerate towards drRhrough coalescence, but only to d-FAs a matter of fact, taking

d = 0 allows one to introduce a scaling such that b, in which case (38) is just the
downshift of (3.2) (by half a step inz). The resulting equation is a d:Pwith the proper
identification of the parameters it is simply equation (2.12). On the other hand, if we consider
the continuous limit that leads to (3.3) it is easy to retrace the stepsdwith0. The result

is then the same as equation (3.3) with thie ferm missing. Thus, thé = 0 case, which
coincides with equation (2.12), has a continuous limit to the zero-paramgter = § = 0).

We must make clear, however, that these two continuous limits of (2.12) exist in different
sectors. If we consider equation (2.12) as resulting from the one-paramafgertde we can
follow the different behaviours of in the two continuous limits. In the Bector,y is the same

asx, just upshifted by half a step, while in thg,Bectory is roughly equal ta /2x.

3.1. Relation to P;; and bilinearization

It is interesting to show that one can obtain equation (3.2) from the aatéidnd
transformations of a continuous equation. Itturns outthatthe same Schlesinger transformations
of the continuous | which, as we have seen, led to the alternatg geBuation (2.8), also give
the discrete one-parametey Pequation (3.2). We introduce = wy_2 12, ¥ = Wa—2.8-2
and, using equation (2.3), we find )
2B(t(w — w?) — (@ — Dw) + 2(a — 2)t
I T W —w) —(@—Dw2—12

(3.48)
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This is indeed identical to equation (8)drovided we defing = (r(w' — w?) — (@ — Hw),
which, incidentally, is exactly the quantity introduced in equation (2.9), and we identify
z=28,d =t,b=2(a—2)t. Next, using equation (2.3) and the differential equation fpr P
equation (2.2), we can prove thatdefined above satisfies two relations in terms @ind y,
namelyx = r(y' — 1)/y?+ (B +1)/y andx = r(—y’ — 1)/y?+ (8 — 1)/y. Thus ‘upshifting’
the second relation (i.e. writing it fg# + 4) and adding to the first one we find
2844
2y

which is just (3.2) with a = —2¢, and 28 + 4 is preciselyz, since a full step of z = 28 is
k = 8.

Since the one-parameter discrefg &d the alternate discretg Bre both obtained from
the Schlesinger transformations of the continuoysiPmakes sense to compare them, in
particular, as motions in thex, 8) plane. The variable is essentially the same as just
shifted to the pointa — 2, 8 + 2), but note that in (2.8) the motion is by two units in both
a and 8 (the dual equation where and 8 vary in opposite directions also exists), while
in (3.2) the motion is by four units i only (the dual motion inx only also exists). Thus
the two motions are at an angle of°4% each other. The geometry of alternate dad its
Schlesinger transformations have been described in detail in [9]. Using these results of [9] itis
straightforward to obtain the bilinearization of the one-parametey dWe start by introducing
the two-parameter-function which exists on points of the two-dimensional lattige,, s+2,,
such thain + p is odd. We now defina as
To,p+2Ta,p—2

xX+tx =

(3.40)

Wy, = (35)

Ta+2,8Ta—2,8
The quantityw (or equivalently,y = wq_ g+2) exists at pointse + 2m, 8 + 2p) such that
m + p is even. The quantity, on the other hand, lives at the same points on the lattice as the
7 and is defined by

Ty, g+2Ta—4,8-2 To,p—2Ta—4,5+2
Xog—2 =1 — o pr - f2 ok - P2y (3.6)
Ta72,ﬂ Tot72,ﬂ

A first bilinear equation is obtained by equating the two expressions.for

Ty, p+2Ta—4,—2 F Tu p—2Ta—4,p42 = 2tT§_z,,g~ (3.7)

Substituting the expressions.ofindy in terms ofz into equation (3.2) we obtain multilinear
equations which can be separated into the bilinear system

Ta—4,8—2Ta+2,8 — Ta,pr2Ta—28-4 = B+ — DTa p_2Ta—2p (3.89)
Ta+2,pTa—4,p+2 + To p—2Ta—2,p+4 = (B — 0 + 2) Ty pe2Ty—2 8- (3.80)

Equations (3.7) and (3.8) are an overdetermined but compatible system, and constitute the
bilinearization of the one-parameter grPequation (3.2), as well as the alternate ,d-P
equation (2.8), as can be easily checked.

3.2. The Miura transformed equations

Just as we have done in the continuous case, we shall introduce the Miura transformation
of the one-parameter d;P The equation we are seeking is one relating the quantity
introduced in (2.9) and a new variable which we shall denote.byOur guide, as usual,

will be the bilinear formalism. Using (2.9) and the expressions:fap in terms oft we find
Ug—1p+41 F U/2 = Ty—a p+2Ta+2,8/Ta, pr2Ta—2,8. NEXt, we introduce which, in terms of the
7-functions can be writtel,_1 -1 = Ta—4,g-2Ta+2,8/Ta, p—2Ta—2,p. It is NOW staightforward
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toshowthab, 1 p_1+ue—1p+1+1/2 = 2t /e g ANAVy—1 grattg—1 gr1t /2 = 2t Jwa—2 p+2,
using the same convention as for the one-parametgr,ce@uation (3.2). Multiplying the two
relations we find a denominatarw,_» g+> Which, using (3.8), can be expressed in terms
of uy—_1, g+1 ONly. The result is a first equation relating_1 g_1, vy—1,g+3 aNduy_1 g+1 Which
reads

2+ a— +
— g2 2 et (3.9)

(Va—1,-1 FUg-1,p+1F 11/2) (Vo—1,+3 + Ug_1,p+1 + I1/2) .
o B o B+ / o B+ o B+ / M/Z — ua—l,ﬂ+l

It is clear from the form of (3.9) that we can obtain a much simpler expression if weushift
Thus redefininge — u — /2 and dropping the first index which is always- 1, we have

Upg+1
,3+1—Mﬁ+]_—(0t—1)

whereg + 1 is the value ati,_1 g+1 Of the independent variable white— 1 is the constant
parameter along this evolution, and we have used the valuye ef 8 — « + 2. The
second equation relating and v can be obtained along similar lines, using the fact that
Vy-1p-1FUy-1p5-3= 2t/wa_2,ﬂ_2. The final result is

(Vp—1 + 1) (Vpsa + upgr) = 4t (3.1

Vg—1
1 tup_3)(vp_y + = 42 a . 3.1
(vg—1tug_3)(vg—1 +ug+1) B_1—v, ita—1 ( )
Here the value of the independent variablevaty s_1 is indeedg — 1, shifted down by
a half-step from (3.18). System (3.10) is the Miura transformation of the one-parameter
d-R; equation. Its continuous limit can be obtained by putting & ¢, 8 = 4s/e and
Vo—1,-1 = —Uq—1p+1 + €X/25 + O(€?). Atthe limite — 0 we obtain the system

2x'+1

X

u+tog—2=—s (3.119)

2

2xu’ = — (3.11b)
where the ) denotes the derivative with respectsto This is the analogue of system (2.6).
Note that up to a trivial normalizatiom, here is essentially the quantity, g+, appearing in
equation (2.9). Eliminating we obtain, forx, a one-parameter dPin the noncanonical
form (3.3), with« instead ofy, while eliminatingx leads to a second-degree equation for
¢ =u+a — 2 similar to (2.7).

One remark is in order at this point. In [9] we have presented the solutions of alternate
d-P, in terms of special functions (Bessel or, equivalently, discrete-Airy functions). These
solutions are written in terms af-functions which are Casorati determinants, the size of
which is determined by — 8. This size is, therefore, constant along the evolution defined
by equation (2.8): they are what are called ‘lattice’ solutions. At the continuous limit these
solutions go over to solutions of continuousiR terms of fixed-size Wronskian determinants
of Airy functions. Alternate d-P also has solutions where the size of the determinants is
determined by + 8 and keeps varying along the evolution: such solutions are called ‘molecule’
solutions in the same terminology. These solutions do not possess a continuous limit. The
very samer-functions also define solutions for equation (3.2) but here the evolution is long
for fixeda and, therefore, the size of the determinants always varies along the evolution. Thus
the one-parameter drPhas two families of ‘molecule’ solutions but no lattice-type solutions.

In particular, as we stated above, it does not have special-function-type solutions obtained
through a reduction to a Riccati equation (which would be elementary lattice-type solutions,
in terms of determinants the size of which is just one).
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4. The one-parameterg-Py; equation

We turn now to they-discrete form of the one-parametgy P The starting point is the full
q-Pu, first obtained in [18]:

2
_x_)z = M (4_1a)
y(y+d)
_ bgx+q*
W= aro (4.10)

whereq = goA". (We must point out here that the equation known as stangdd is, as
shown by Jimbo and Sakai [19]gadiscrete form of B when its full freedom is considered,

and is thus not quite appropriate for our purposes.) The standard normalization of (4.1) is
¢ =d = —1and, in fact, the continuous limit of (4.1) is the full,P The one parameterPy,

can be obtained from (4.1) in a straightforward way by taking 0. We gauger through

x — gx/b, takeb?® = d without loss of generality since it corresponds to a scaling, @ind
redefine the independent variable through Adg/a. We thus find the canonical form of this

¢ equation:

1+
xf= 32 (4.23)
y(d+y/d)
x+1
yy=d—z. (4.20)
The continuous limit of equation (4.2) is obtained by putting= ¢ ‘w/t, x = —et/w +
O(€?), » = e %,z = —2¢73/1? andd = 1 + e, resulting in the one-parameter continuous

Pui, equation (2.4).

4.1. Bilinearization and Miura transformations

At this point it is interesting to study, in more detail, equation (4.2). We start by deriving the
Schlesinger transformations, which correspond to the changes of the pardmetershall
denote these changes by the symbol hatdie. »d. We first introduce an auxiliary variable

v through the relations

Xyv=xyv =1 (4.3)

Using (4.3) and the one-parameteP;; we can now establish the equations for the evolution
along thed direction:

VD = Atyd (4.49)
y(1+y/z)
v+1
yy=1—5 (4.4p)
~ v

We remark that this equation has the same form as (4.2), provided one replagaesand
interchangeg andd. Thus the one-parametesP,, is self-dual. Before proceeding further,
let us give the bilinearization of equation (4.2). We start with the ansatze= —¢

T ad Tz/h, t//)\
Via = gl andy; g = PR = (PR — 1) = d(=4F4 — 1), wherert stands
for t, 4. Note that though for simplicity we gaveio v andy the |nd|ces(z d), this is really
only strictly true fory, the actual values of the independent variable and of the parameter being
in fact (z/+/4, d) for x and g, d/+/2) for v. Using these arigze one can obtain two bilinear

equations:

TendTeppdn = 2 TedToppag — T2) = d(T,2aToasn — T2 (4.5)
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and verify that (4.3) is identically satisfied. A third bilinear equation is obtained from
equation (4.B) and we give it in two forms equivalent up to (4.5):
Tiza2d Tz/nd/n = Z2(TTad * Tzn.dTazid) (4.69)
T2z ad Tz/nd/n = A(TToza + Toa/nTazd)- (4.60)
Just as we have done for the continuous and discrete one-paramstertokieé we shall

introduce the Miura transformation of equations (4.2) and (4.4). We start by introducing the
auxiliary variablex defined in terms of the-functions as¢, ; = “24%4 the actual values

TTz/n,d/r
of the independent variable and of the parameter being, in fa6t/X, d/~/2). The Miura
transformations involving read
Uzad = xz,d(l + yz,d/d) = vz,d(l +yz,d/Z) (47a)
Uizid = Xozd(L+ya/d) = v 5a(L+y, 4/2). (4.70)

Using equations (4.7) together with (4.3) we can easily recover (4.2) and (4.4). On the other
hand we can also obtain their Miura transformations by eliminatiagd one of the variables
x orv. Forinstance, the elimination efandx, leads to the Miura transformations of (4.2):

(““’ - 1) (—“W - 1) = EU“’; : (4.83)

Vz.d Vz,d Y

(”“’ - 1) ( Yad _ 1) T su (4.80)
Vz,d Vz/h.d Z

This equation can assume a ‘nicer’ form if we invertThus withv — 1/v we obtain

1
(uz.dvz,d - 1)(“Az,dvz,d - l) = zvz,d(vz,d + 1) (493)

d
(Mz,dvz,d - 1)(Mz,dvz/k,d - 1) = z(l +uz,d)- (4%)

Similarly, the Miura transformation of (4.4) is obtained by eliminatiory@ndv resulting in
(with x — 1/x):

1
(”z,dxz.d - 1)(uz,kdxz,d - 1) = [_lxz,d(-xz,d + 1) (41(3-)

eaXed — Dz gXoap — 1) = 3(1 ) (4.100)

where, like in (4.4) is the independent variable apnds a parameter. The continuous limit
of (4.9) and (4.10) is a second-degree equation of Cosgrove type. Putting —1 — €¢/2,
v.g = —1+ep/2 +O(€?) in (4.9) and choosing the same ansatzexfor andd as for the
continuous limit of (4.2) we obtain exactly equation (2.7) dor

4.2. The oblique equations

We now turn to the derivation of the equation that relatesxdv. In geometrical terms the
motions along andd define evolutions along two orthogonal axes while the evolution we are
looking for now is a diagonal one, at 45vhere bothy andd advance by.. Thusz = zpA”
andd = dp)\", wheren is the number of steps iboththe z andd directions. Using again,
(4.2) and (4.3), we readily find

1
Vz/x,dVz,0d = m (4.1

1

_ 4.11b
(et D ( )

Xz, dXrz,ad =
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This equation was first derived in this form in [18] where it was shown to be equivalent to
some other equation, namely

(@xXz,a%nz0a — V(@xzaXeppam/r—1) = Wi"’l) (4.12)
obtained in [13] as a limit of-Py. At the continuous limit it goes over, as expected, {0 P
Indeed, takinge, ¢ = —2(1+ew), v, g = —2(1—ew) +O(€?), z0 = —3,do = —(L +e3) /4
andi = 1 +¢3/2 (which means that” = 1 +€?t/2 with t = ne), we obtain, at the limit
e — 0, the equationw” = 2w® +rw — 2u — %: i.e. exactly Painle® Il in canonical form.
Equation (4.11) describes an equation along a diagonal direction invalvilhés also possible
to define a diagonal evolution which involvesandu. Using the Miura transformations (4.7)

introduced above we can easily find

1+y.q4/d)(1+ 2.d/2)
e gty g = (L+y.a/ Ved/ (4.13)
Yz.d
VedYepdpn = A +uzg)zd /A (4.1%)

From the form of (4.1B) it is clear that we can eliminatealtogether and obtain an equation
for y only. We thus find

d (V2 *d)(yra+2)
Yz.d

This equation, up to a trivial gauge, is part of the, family discussed in [13], although not
explicitly analysed there. We can show that (4.14) is a discrete formsofIRdeed putting
y..q = (1 +€?(w +1/2))/4 and taking the same ansatze for; andd as for the continuous
limit of (4.11) we obtain, at the limi¢ — 0, the equatiom” = w?/2w —4w? —tw — u?/2w,
i.e. P4 in almost canonical form.

Equation (4.11) being a discretg Possesses solutions in termsgotliscrete special
functions. We find readily that ify = zo, x andv can be expressed &s;, = —2A; 4/Az/x.d/5,
Vo ad = —Aza/22A,,4, WhereA is the solution of they-discrete Airy equatiom, ;. 4/, —
2A, 4 — 4zA;.;4 = 0. At the continuous limitA satisfies the Airy equatioA” +1A/2 = 0,
and the corresponding= A’/ A indeed satisfiesPwith « = 0. Higher solutions of this type
exist whenevetly/zo = 2™, wherem is an integer, and can be obtained using the Schlesinger
transformations given by equations (4.2) and (4.4). This means that the same objects can be
considered as solutions of (4.2) and (4.4). However, since the solutions are expressed as ratios
of determinants i the size of which grows with the evolution steps along the orthogonal
axes (‘bar’ or ‘hat’, independently) these solutions of the one-parame®gr are again of
molecule type.

Equation (4.11) is not the only transverse equation we can obtain from (4.2), (4.3). Indeed,
we can consider a motion wherendd advance in opposite directions, i.e. wheébecomes
Ad, z becomeg/A. The equation fox andw is slightly more complicated in this case. We
find

VzaYnznd — 22d) Yz aYzpnam — 2d/2) = 2 (4.14)

(Xrz.d — Vaz.a) (Xaz.d — Uz ad) _ sz,dz*' 1 (4.15)
(Xrz,d — dViza/22)(Xrza — dVz3a/2) dx)\z’d

(Vz0a — Xz0a) Wz 0a — Xoz,a) — vz,)\z; + 1 (415))
(vz,)\d - sz,)\d/)‘-d)(vz.kd - Zxkz,d/d) sz,kd

This equation can assume a more familiar form if we introduce the variable chargé/v.
We thus obtain

(Xrz,dViz.a — d/22)(Xpz.aVepa —d)2) dx?, 4
(Xrz,aVaz,da — D(xpzavz0a — D Xpzatl

(4.163)
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(V2 2dXz0a — Ad[2) (V2 3a X020 —d/2) Ad?
(Ve dXz0a — DV paXza — 1) 2Vz3a(Vz 00 + 1)

where the independent variable is nayz; and the only parameter ig/. Equation (4.16) is
a limit of the asymmetrig-P,, which has been recently derived [10]. Itis, of course, a very
particular limit since out of the six parameters of asymmefrig,; only one survives here.
We can remark here that equations (4.11) and (4.15) look completely different. Contrary to
the case of equations (4.2)—(4.4) the motion along the diagonal direction is not self-dual. Thus
although the space evolution of the one-paramgtBy;, and its Schlesinger transformations
is a two-dimensional one it does not have the symmetries of eitBeioaanA, Weyl group,
which would have been the case in a perfectly self-dual situation.

(4.160)

5. Conclusion

We can now sum up our findings. In this paper we have studied an often overlooked canonical
form of the Painleg Il equation. We have shown that this one-paramejehBs properties
different than those of the full,)P (and also than those of the other one-parameter P&nlev
equation, ). We have presented two different discretizations of this one-paramgterire
firstis a discrete Painlé@equation of difference type while the secondgsRainlee equation.
We have shown that the difference equation, as expected, is perfectly self-dual. Moreover, the
¢ equation is also self-dual when one considers the motion along the two main directions:
evolution inz or changes of the parametéthrough Schlesinger transformations. However,
the motion in diagonal directions when the original independent varigdhel the parameter
d both change, either together or in oppositiomas self-dual. This makes the geometrical
description of this equation all the more challenging.

The method used in this paper was to study an equation, its difference form aridrits
in parallel. We consider that this is the right approach to the study of discrete systems since
it establishes a parallel with continuous systems and explores the two aspects of discreteness:
the additive and the multiplicative. We intend to use this mode of complete investigation in
future work on discrete systems.
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